Lesson 15. More Economic Applications of Linear Systems

1 Overview

- In this lesson/worksheet, you will solve two types of economic models using the techniques for solving systems of linear equations we covered in Lessons 12 and 13.

2 Market models

- Consider the following two commodity market model:

$$
\begin{align*}
D_{1} & =S_{1} \tag{1}\\
D_{1} & =10-2 P_{1}+P_{2} \tag{5}\\
S_{1} & =-2+3 P_{1}
\end{align*}
$$

$$
\begin{align*}
D_{2} & =S_{2} \\
D_{2} & =15+P_{1}-P_{2} \\
S_{2} & =-1+2 P_{2} \tag{6}
\end{align*}
$$

where

$$
\begin{array}{ll}
D_{1}=\text { demand for product } 1 & D_{2}=\text { demand for product } 2 \\
S_{1}=\text { supply for product } 1 & S_{2}=\text { supply for product } 2 \\
P_{1}=\text { price for product } 1 & P_{2}=\text { price for product } 2
\end{array}
$$

- Look at equations (2) and (5). Explain why product 1 and product 2 are substitutes. (See Lesson 10 for a refresher.)
- We want to find the equilibrium prices P_{1} and P_{2} in this market.
- First, simplify the system (1)-(6) above. Because of equation (1), you can set the right hand sides of equations (2) and (3) equal to each other. You should obtain an equation with 2 variables: P_{1} and P_{2}. Simplify the equation by collecting terms and putting all the P_{1} and P_{2} terms on the left, and the constant on the right.
\square
- Do the same with equations (4), (5) and (6):
- Putting together the equations you found in (A) and (B), you should end up with the following system of equations:

$$
\begin{align*}
-5 P_{1}+P_{2} & =-12 \tag{C}\\
P_{1}-3 P_{2} & =-16
\end{align*}
$$

(Did you get the same equations? You may have the same equations, but multiplied by -1 , which is OK.)

- Rewrite the system (C) in matrix form $A X=B$:

$$
A=\quad X=\quad B=
$$

- Now, use Cramer's rule to solve this system and find the equilibrium prices:
- You should find that the equilibrium prices are $P_{1}=\frac{26}{7}$ and $P_{2}=\frac{46}{7}$.

3 A model for national income

- Consider the following national income model:

$$
\begin{align*}
& Y=C+I_{0}+G_{0} \tag{7}\\
& C=a+b Y \quad(0<b<1) \tag{8}
\end{align*}
$$

where

$$
\begin{aligned}
Y & =\text { national income } \\
C & =\text { consumer expenditure } \\
I_{0} & =\text { business expenditure (i.e., investment) } \\
G_{0} & =\text { government expenditure }
\end{aligned}
$$

(We saw a more complicated version of this model back in Lesson 7.)

- Equation (7) says that national income equals total expenditure by consumers, business, and government.
- What does equation (8) say about the relationship between consumer expenditure and total national income?
- Now suppose that $I_{0}=8, G_{0}=5, a=4$, and $b=\frac{1}{3}$. Then equations (7) and (8) become

$$
\begin{align*}
& Y=C+13 \tag{9}\\
& C=4+\frac{1}{3} Y \tag{10}
\end{align*}
$$

- We want to solve for the national income Y and consumer expenditures C.
- First, simplify equations (9) and (10) by putting the Y and C terms on the left, and the constants on the right:
(D)
(D)
- Rewrite the system of equations you wrote in (D) in matrix form $A X=B$:

$$
A=\quad X=\quad B=
$$

- Now, use Cramer's rule to solve this system and find the national income and consumer expenditure:
- You should find that the national income $Y=\frac{51}{2}$ and consumer expenditure $C=\frac{25}{2}$.

4 Exercises

Problem 1. Consider the three commodity market model given by
$D_{1}=S_{1}$
$D_{2}=S_{2}$

$$
D_{3}=S_{3}
$$

$D_{1}=2-P_{1}+2 P_{2}+2 P_{3}$
$D_{2}=5-2 P_{1}-P_{2}+2 P_{3}$

$$
S_{1}=-2+P_{1}
$$

$$
S_{2}=-1+P_{2}
$$

$$
\begin{aligned}
D_{3} & =5-2 P_{1}+2 P_{2}-P_{3} \\
S_{3} & =-3+P_{3}
\end{aligned}
$$

Using a similar method to the one outlined in Section 2 of this worksheet, simplify the above model into a system of 3 linear equations and 3 variables P_{1}, P_{2}, and P_{3}. Solve this system to find the equilibrium prices P_{1}, P_{2}, and P_{3} by forming the augmented matrix of the system and finding the RREF.

Problem 2. Suppose that in a national income model as in Section 3, we have $I_{0}=12, G_{0}=4, a=1, b=\frac{1}{4}$. Use Cramer's rule to find Y and C.

